您的位置:百味书屋 > 范文大全 > 经典范文 > 国内外建筑信息模型BIM理论与实践研究综述 正文 本文移动端:国内外建筑信息模型BIM理论与实践研究综述

国内外建筑信息模型BIM理论与实践研究综述

2017-05-07 06:33:01 来源网站: 百味书屋

篇一:BIM建筑信息模型概述及在中国使用情况

BIM建筑信息模型概述及在中国使用情况

目录

1.1 建筑信息模型BIM的概述 ................................................................................................. - 0 -

1.2 BIM给我们带来的好处 ............................................................................................. - 1 -

1.2.1具体而言,BIM 的应用具有以下价值。 ....................................................... - 1 -

1.3 关于BIM的案例 ........................................................................................................ - 3 -

2.1 建筑节能设计的现状 .................................................................................................. - 5 -

第三章 BIM在我国的发展 ...................................................................................................... - 7 -

3.1 协同设计与BIM技术的融合 ...................................................................................... - 8 -

3.2 从二维设计到三维BIM设计 .................................................................................... - 9 -

3.3 影响3D BIM普及的主要因素 ................................................................................. - 11 -

第四章 BIM在我们国家的状况........................................................................................... - 14 -

4.1 中国BIM软件现状 ................................................................................................... - 14 -

4.2 BIM软件中国战略目标探讨 .................................................................................. - 16 -

4.2.1 BIM软件为整个工程建设行业产生最大价值的角度 ............................... - 16 -

4.2.2 BIM软件本身这个市场的影响力和占有率角度 ....................................... - 16 -

4.3 BIM软件中国战略行动路线探讨 .......................................................................... - 18 - 小结 ........................................................................................................................................... - 20 -

1.1 建筑信息模型BIM的概述

BIM的全拼是Building Information Modeling,即:建筑信息模型。BIM 是以三维数字技术为基础,集成了建筑工程项目各种相关信息的工程数据模型,BIM 是对工程项目设施实体与功能特性的数字化表达。一个完善的信息模型,能够连接建筑项目生命期不同阶段的数据、过程和资源,是对工程对象的完整描述,可被建设项目各参与方普遍使用。BIM 具有单一工程数据源,可解决分布式、异构工程数据之间的一致性和全局共享问题,支持建设项目生命期中动态的工程信息创建、管理和共享。建筑信息模型同时又是一种应用于设计、建造、管理的数字化方法,这种方法支持建筑工程的集成管理环境,可以使建筑工程在其整个进程中显著提高效率和大量减少风险。

BIM 一般具有以下特征:

模型信息的完备性:除了对工程对象进行3D 几何信息和拓扑关系的描述,还包括完整的工程信息描述,如对象名称、结构类型、建筑材料、工程性能等

设计信息;施工工序、进度、成本、质量以及人力、机械、材料资源等施工信息;工程安全性能、材料耐久性能等维护信息;对象之间的工程逻辑关系等。

模型信息的关联性:信息模型中的对象是可识别且相互关联的,系统能够对模型的信息进行统计和分析,并生成相应的图形和文档。如果模型中的某个对象发生变化,与之关联的所有对象都会随之更新,以保持模型的完整性和健壮性。

模型信息的一致性:在建筑生命期的不同阶段模型信息是一致的,同一信息无需重复输入,而且信息模型能够自动演化,模型对象在不同阶段可以简单地进行修改和扩展而无需重新创建,避免了信息不一致的错误。

1.2 BIM给我们带来的好处

其实,它是引领建筑业信息技术走向更高层次的一种新技术,它的全面应用,将为建筑业界的科技进步产生无可估量的影响,大大提高建筑工程的集成化程度。同时,也为建筑业的发展带来巨大的效益,使设计乃至整个工程的质量和效率显著提高,成本降低。

1.2.1具体而言,BIM 的应用具有以下价值。

1、解决当前建筑领域信息化的瓶颈问题

建立单一工程数据源。工程项目各参与方使用的是单一信息源,确保信息的准确性和一致性。实现项目各参与方之间的信息交流和共享。从根本上解决项目各参与方基于纸介质方式进行信息交流形成的“信息断层”和应用系统之间“信息孤岛”问题。

推动现代CAD 技术的应用。全面支持数字化的、采用不同设计方法的工程设计,尽可能采用自动化设计技术,实现设计的集成化、网络化和智能化。

促进建筑生命期管理,实现建筑生命期各阶段的工程性能、质量、安全、进度和成本的集成化管理,对建设项目生命期总成本、能源消耗、环境影响等进行分析、预测和控制。

2、基于BIM 的工程设计

实现三维设计。能够根据3D 模型自动生成各种图形和文档,而且始终与模型逻辑相关,当模型发生变化时,与之关联的图形和文档将自动更新;设计过程中所创建的对象存在着内建的逻辑关联关系,当某个对象发生变化时,与之关联的对象随之变化。

实现不同专业设计之间的信息共享。各专业CAD 系统可从信息模型中获取所需的设计参数和相关信息,不需要重复录入数据,避免数据冗余、歧义和错误。 实现各专业之间的协同设计。某个专业设计的对象被修改,其他专业设计中的该对象会随之更新。

实现虚拟设计和智能设计。实现设计碰撞检测、能耗分析、成本预测等。

3、基于BIM 的施工及管理

实现集成项目交付IPD(Integrated Project Delivery )管理。把项目主要参与方在设计阶段就集合在一起,着眼于项目的全生命期,利用BIM 技术进行虚拟设计、建造、维护及管理。

实现动态、集成和可视化的4D 施工管理。将建筑物及施工现场3D 模型与施工进度相链接,并与施工资源和场地布置信息集成一体,建立4D 施工信息模型。实现建设项目施工阶段工程进度、人力、材料、设备、成本和场地布置的动态集成管理及施工过程的可视化模拟。

实现项目各参与方协同工作。项目各参与方信息共享,基于网络实现文档、图档和视档的提交、审核、审批及利用。项目各参与方通过网络协同工作,进行工程洽商、协调,实现施工质量、安全、成本和进度的管理和监控。

实现虚拟施工。在计算机上执行建造过程,虚拟模型可在实际建造之前对工程项目的功能及可建造性等潜在问题进行预测,包括施工方法实验、施工过程模拟及施工方案优化等。

其实,它是引领建筑业信息技术走向更高层次的一种新技术,它的全面应用,将为建筑业界的科技进步产生无可估量的影响,大大提高建筑工程的集成化程度。同时,也为建筑业的发展带来巨大的效益,使设计乃至整个工程的质量和效率显著提高,成本降低。

1.3 关于BIM的案例

《杭州奥体中心主体育场》杭州奥体中心主体育场是由CCDI体育事业部和CCDI的BIM团队共同完成的设计。

1.31 BIM技术让“杭州奥体中心主体育场”项目的设计工作发生了变化

杭州奥体中心主体育场”位于钱塘江与七甲河交汇处南侧,规划建筑面积22.9万平方米,可举办洲际性、全国性综合运动会及国际田径、足球比赛,拥有观众固定坐席80000个。以优雅又富有张力的花瓣外形为表现形式,正是建筑师将活力动感与华贵美丽完美结合的创意,它似花非花、如梦如幻,却又卓尔不群、傲然挺立在钱塘江畔。

1. 模型设计发生的变化

作为一名建筑师,首先要真实地再现他们脑海中或精致、或宏伟、或灵动或庄重的建筑造型,在使用BIM之前,CCDI体育事业部的建筑师们很多时候是通过泡沫、纸盒做的手工模型展示头脑中的创意,相应调整方案的工作也是在这样的情况下进行的,由创意到手工模型的工作需要较长的时间,而且设计师还会反复多次在创意和手工模型之间进行工作。

2.专业设计发生的变化

“杭州奥体中心主体育场”项目,由于其兼具体育场和外观复杂的双重特性,

所以只有采用三维建模方式进行设计,才能避免许多二维设计后期才会发现的问题。因此,CCDI设计团队采用了基于BIM技术的Revit系列软件做支撑,以预先导入的三维外观造型做定位参考,在Revit中建立体育场内部建筑功能模型、结构网架模型、机电设备管线模型。

3.专业纠错的变化

“杭州奥体中心主体育场”项目建立了BIM模型,由于其真实的三维特性,它的可视化纠错能力直观、实际,对设计师很有帮助,这使施工过程中可能发生的问题,提前到设计阶段来处理,减少了施工阶段的反复,不仅节约了成本,更节省了建设周期。

4.模型后续利用的变化

体育场馆的设计对防火、疏散、声音、温度等要求较高,这些都有非常专业的分析模拟软件,而BIM模型的建立有助于相关的分析研究。

“杭州奥体中心主体育场”项目利用完整的BIM模型信息,对体育场模型进行了声环境模拟分析,通过模拟预测体育场内的声环境,证明体育场坐席区域的声压级分布均匀,通过模拟体育场在83Hz、125Hz、250Hz各个频带观众坐席区声压级差分布分析,证明项目的设计无声场缺陷。该项目对体育场的风环境也做了分析,对平台行人活动区进行分析,结果是无严重的空气旋涡和流动死角;对主体育场与网球场之间区域进行分析,结果是两个建筑之间没有形成隧道风。该项目还对体育场的温度环境做了分析,直接将BIM模型导入到IES软件,分析无孔隙结构与孔隙结构外壳两种方式的温度分布变化,以确定外壳是否开孔以及开孔率。

应用基于BIM技术的软件是有一定难度的,如何让设计师尽快用上BIM产品,CCDI人有自己的模式,他们收获的不止是BIM技术带来的快捷精准、信息积存,更收获了一支BIM团队,如今他们已经有很多成功的体育场馆工程项目是通过BIM完成的。

CCDI应用BIM技术,从草图到BIM模型,再到各专业分析,全过程设计以BIM模型为核心,实现了BIM模型信息在设计流程中的有效传递,使设计者的灵感在BIM技术的辅助

篇二:建筑信息模型BIM中英文对照外文翻译文献

(文档含英文原文和中文翻译)

中英文翻译

外文文献:

Changing roles of the clients,architects and contractors through BIM

Abstract

Purpose – This paper aims to present a general review of the practical implications of building information modelling (BIM) based on literature and case studies. It seeks to address the necessity for applying BIM and re-organising the processes and roles in hospital building projects. This type of project is complex due to complicated functional and technical requirements, decision making involving a large number of stakeholders, and long-term development processes. Design/methodology/approach – Through desk research and referring to the ongoing European research project InPro, the framework for integrated collaboration and the use of BIM are analysed. Through several real cases, the changing roles of clients, architects, and contractors through BIM application are investigated.

Findings – One of the main findings is the identification of the main factors for a successful collaboration using BIM, which can be recognised as “POWER”: product information sharing (P),organisational roles synergy (O), work processes coordination (W), environment for teamwork (E), and reference data consolidation (R). Furthermore, it is also found that the implementation of BIM in hospital building projects is still limited due to certain commercial and legal barriers, as well as the fact that integrated collaboration has not yet been embedded in the real estate strategies of healthcare institutions.

Originality/value – This paper contributes to the actual discussion in science and practice on the changing roles and processes that are required to develop and operate sustainable buildings with the support of integrated ICT frameworks and tools. It presents the state-of-the-art of European research projects and some of the first real cases of BIM application in hospital building projects. Keywords Europe, Hospitals, The Netherlands, Construction works, Response flexibility, Project planning

Paper type General review

1. Introduction

Hospital building projects, are of key importance, and involve significant investment, and usually take a long-term development period. Hospital building projects are also very complex due to the complicated requirements regarding hygiene, safety, special equipments, and handling of a large amount of data. The building process is very dynamic and comprises iterative phases

and intermediate changes. Many actors with shifting agendas, roles and responsibilities are actively involved, such as: the healthcare institutions, national and local governments, project developers, financial institutions, architects, contractors, advisors, facility managers, and equipment manufacturers and suppliers. Such building projects are very much influenced, by the healthcare policy, which changes rapidly in response to the medical, societal and technological developments, and varies greatly between countries (World Health Organization, 2000). In The Netherlands, for example, the way a building project in the healthcare sector is organised is undergoing a major reform due to a fundamental change in the Dutch health policy that was introduced in 2008.

The rapidly changing context posts a need for a building with flexibility over its lifecycle. In order to incorporate life-cycle considerations in the building design, construction technique, and facility management strategy, a multidisciplinary collaboration is required. Despite the attempt for establishing integrated collaboration, healthcare building projects still faces serious problems in practice, such as: budget overrun, delay, and sub-optimal quality in terms of flexibility, end-user?s dissatisfaction, and energy inefficiency. It is evident that the lack of communication and coordination between the actors involved in the different phases of a building project is among the most important reasons behind these problems. The communication between different stakeholders becomes critical, as each stakeholder possesses different set of skills. As a result, the processes for extraction, interpretation, and communication of complex design information from drawings and documents are often time-consuming and difficult. Advanced visualisation technologies, like 4D planning have tremendous potential to increase the communication efficiency and interpretation ability of the project team members. However, their use as an effective communication tool is still limited and not fully explored (Dawood and Sikka, 2008). There are also other barriers in the information transfer and integration, for instance: many existing ICT systems do not support the openness of the data and structure that is prerequisite for an effective collaboration between different building actors or disciplines.

Building information modelling (BIM) offers an integrated solution to the previously mentioned problems. Therefore, BIM is increasingly used as an ICT support in complex building projects. An effective multidisciplinary collaboration supported by an optimal use of BIM require changing roles of the clients, architects, and contractors; new contractual relationships; and

re-organised collaborative processes. Unfortunately, there are still gaps in the practical knowledge on how to manage the building actors to collaborate effectively in their changing roles, and to develop and utilise BIM as an optimal ICT support of the collaboration.

This paper presents a general review of the practical implications of building information modelling (BIM) based on literature review and case studies. In the next sections, based on literature and recent findings from European research project InPro, the framework for integrated collaboration and the use of BIM are analysed. Subsequently, through the observation of two ongoing pilot projects in The Netherlands, the changing roles of clients, architects, and contractors through BIM application are investigated. In conclusion, the critical success factors as well as the main barriers of a successful integrated collaboration using BIM are identified.

2. Changing roles through integrated collaboration and life-cycle design approaches

A hospital building project involves various actors, roles, and knowledge domains. In The Netherlands, the changing roles of clients, architects, and contractors in hospital building projects are inevitable due the new healthcare policy. Previously under the Healthcare Institutions Act (WTZi), healthcare institutions were required to obtain both a license and a building permit for new construction projects and major renovations. The permit was issued by the Dutch Ministry of Health. The healthcare institutions were then eligible to receive financial support from the government. Since 2008, new legislation on the management of hospital building projects and real estate has come into force. In this new legislation, a permit for hospital building project under the WTZi is no longer obligatory, nor obtainable (Dutch Ministry of Health, Welfare and Sport, 2008). This change allows more freedom from the state-directed policy, and respectively, allocates more responsibilities to the healthcare organisations to deal with the financing and management of their real estate. The new policy implies that the healthcare institutions are fully responsible to manage and finance their building projects and real estate. The government?s support for the costs of healthcare facilities will no longer be given separately, but will be included in the fee for healthcare services. This means that healthcare institutions must earn back their investment on real estate through their services. This new policy intends to stimulate sustainable innovations in the design, procurement and management of healthcare buildings, which will contribute to effective and efficient primary healthcare services.

The new strategy for building projects and real estate management endorses an integrated

collaboration approach. In order to assure the sustainability during construction, use, and maintenance, the end-users, facility managers, contractors and specialist contractors need to be involved in the planning and design processes. The implications of the new strategy are reflected in the changing roles of the building actors and in the new procurement method.

In the traditional procurement method, the design, and its details, are developed by the architect, and design engineers. Then, the client (the healthcare institution) sends an application to the Ministry of Health to obtain an approval on the building permit and the financial support from the government. Following this, a contractor is selected through a tender process that emphasises the search for the lowest-price bidder. During the construction period, changes often take place due to constructability problems of the design and new requirements from the client. Because of the high level of technical complexity, and moreover, decision-making complexities, the whole process from initiation until delivery of a hospital building project can take up to ten years time. After the delivery, the healthcare institution is fully in charge of the operation of the facilities. Redesigns and changes also take place in the use phase to cope with new functions and developments in the medical world (van Reedt Dortland, 2009).

The integrated procurement pictures a new contractual relationship between the parties involved in a building project. Instead of a relationship between the client and architect for design, and the client and contractor for construction, in an integrated procurement the client only holds a contractual relationship with the main party that is responsible for both design and construction ( Joint Contracts Tribunal, 2007). The traditional borders between tasks and occupational groups become blurred since architects, consulting firms, contractors, subcontractors, and suppliers all stand on the supply side in the building process while the client on the demand side. Such configuration puts the architect, engineer and contractor in a very different position that influences not only their roles, but also their responsibilities, tasks and communication with the client, the users, the team and other stakeholders.

The transition from traditional to integrated procurement method requires a shift of mindset of the parties on both the demand and supply sides. It is essential for the client and contractor to have a fair and open collaboration in which both can optimally use their competencies. The effectiveness of integrated collaboration is also determined by the client?s capacity and strategy to organize innovative tendering procedures (Sebastian et al., 2009).

篇三:建筑信息模型系统(BIM)的策略研究

建筑信息模型系统(BIM)的策略研究

作者:xxx

指导:xxx

摘要:

随着近年数字技术的发展,数字化信息集成下的建筑创作变得越来越为大众所熟知,涌现出了大量优秀的作品。然而作为数字化设计的集合化应用——建筑信息模型集成化管理系统(BIM)在国内的规模化推进却依旧艰难,与国外先进水平差距有进一步扩大的趋势。为了找出问题,解决目前这一现状,本文从工程项目信息的集成化管理角度切入中国的建筑设计,从大量的具体的工程实践入手,分析并阐述了目前我BIM 实践中所遇到的机遇和挑战。对目前国内普遍应用以及主流的BIM 平台进行了总结,为BIM 在我国设计院的有效推进与本土化实现提供良好的理论基础。文章总结出的具体可操作的实现方式,将有效的促进我国尤其是设计院架构下的建筑产业的信息集成化建设发展。本文的研究将原有大量分散的BIM 策略进了系统性的串联。对BIM 在中国的实践进行了一个完整的梳理。为未来的BIM 实践提供了一个系统性的理论构架和方向性的操作指南。在论文的展望与结论部分,作者对未来在建筑数字信息模型的基础上,数字地球以及定制化设计方式提出了自己开拓性的意见。为未来的进一步研究提供了一个全新的思路与方向。自20世纪80年代的个人电脑革命和90年代的互联网革命及其普及作用,计算机网络使得信息化所包含的信息收集、传递与共享具备了实现的技术条件。信息技术近十几年来的飞速发展和广泛应用,其重要意义和对人类的深远影响举世公认。在工程建设领域,计算机应用和数字化技术已展示了其特有的潜力,成为工程技术在新世纪发展的命脉。

关键词:数字技术信息化BIM 系统论协同设计策略

Abstract:

In the past decades, information technology has been more and more applied to architecture design and excellent digital based works can be widely seen now, however the main vehicle of digital architecture design, BIM, is facing a lot of difficulties while populating in China, still a big gap to catch up with world-class level. This article aims to in-sighting root cause of slow population of BIM, find solutions and summarize widely used BIM platforms from perspective of using integrated management to architecture design, in terms of practical experience and challenges of using BIM. The theory and solutions proposed in this article

will provide with a good basis for populating BIM in Chinese architecture design industry. The research helps to link ad hoc BIM applications together and form one integrated theory framework and practice guideline for future BIM booming up in China architecture design field. In the section of future work and conclusions, the author states out constructive ideas from perspectives of digital model, digital planet as well as customized design, which could be start point and guidance of further studies.

Keywords :BIM 、Design strategy 、Localization Strategy 、Modeling

1. BIM核心体系

工程设计是工程建设的龙头。在过去的20年中,CAD(Computer Aided Design)技术的普及推广使建筑师、工程师们从手工绘图走向电子绘图。甩掉图板,将图纸转变成计算机中2D数据的创建,可以说是工程设计领域第一次革命。CAD技术的发展和应用使传统的设计方法和生产模式发生了深刻变化。这不仅把工程设计人员从传统的设计计算和手工绘图中解放出来,可以把更多的时间和精力放在方案优化、改进和复核上,而且提高设计效率十几倍到几十倍,大大缩短了设计周期,提高了设计质量。

建筑信息模型给工程设计领域带来了第二次革命,从二维图纸到四维设计和建造的革命,同时,对于整个建筑行业来说,建筑信息模型(BIM)也是一次真正的信息革命。建筑信息模型是建筑学,工程学及土木工程的新工具。建筑信息模型或建筑资讯模型一词由Autodesk所创。

第一个革命:个人电脑和互联网普及的革命信息

第二个革命:建筑景观对于cad的引用—二维

第三个革命:3dmax等建筑三维软件的引用—三维

第四个革命:BIM系统的引进---建筑信息全模型(覆盖了二维,三维,各种建筑信息,包括内部的,外部景观的,地理信息的等等)

建筑信息模型(BIM)的技术核心是一个由计算机三维模型所形成的数据库,不仅包含了建筑师的设计信息,而且可以容纳从设计到建成使用,甚至是使用周期终结的全过程信息,并且各种信息始终是建立在一个三维模型数据库中。建筑信息模型(BIM)可以持续即时地提供项目设计范围、进度以及成本信息,这些信息完整可靠并且完全协调。建筑信息模型(BIM)能够在综合数字环境中保持信息不断更新并可提供访问,使建筑师、工程师、施工人员以及业主可以清楚全面地了解项目。这些信息在建筑设计、施工和管理的过程中能促使加快决策进度、提高决策质量,从而使项目质量提高,收益增加。整个项目全生命周期的各个阶段:设计、施工和运营管理。建筑信息模型,是以三维数字技术为基础,集成了

建筑工程项目各种相关信息的工程数据模型,是对该工程项目相关信息的详尽表达。Graphisoft公司的Arch c a d、Bentley公司的Trifrom以及Autodesk公司的Revit这些引领潮流的建筑设计软件系统,都是应用了建筑信息模型技术开发的,可以支持建筑工程全生命周期的集成管理环境。

1. 参数化设计

参数化设计从实质上讲是一个构件组合设计,建筑信息模型是由无数个虚拟构件拼装而成,其构件设计并不需要采用过多的传统建模语言,如拉伸、旋转等,而是对已经建立好的构件(称为族)设置相应的参数,并使参数可以调节,进而驱动构件形体发生改变,满足设计的要求。而参数化设计更为重要的是将建筑构件的各种真实属性通过参数的形式进行模拟,并进行相关数据统计和计算。在建筑信息模型中,建筑构件并不只是一个虚拟的视觉构件,而是可以模拟除几何形状以外的一些非几何属性,如材料的耐火等级、材料的传热系数、构件的造价、采购信息、重量、受力状况等等。

2. 构件关联性设计

构件关联性设计是参数化设计的衍生。当建筑模型中所有构件都是由参数加以控制时,如果我们将这些参数相互关联起来,那么我们就实现了关联性设计。换言之,当建筑师修改某个构件,建筑模型将进行自动更新,而且这种更新是相互关联的。例如,我们在实际工程中经常会遇到修改层高的情况,在建筑信息模型中,我们只要修改每层标高的数值,那么所有的墙、柱、窗、门都会自动发生改变,因为这些构件的参数都与标高相关联,而且这种改变是三维的,并且是准确和同步的。我们不再需要去分别修改平立剖。关联性设计它不仅提高了建筑师的工作效率,而且解决了长期以来图纸之间的错、漏、缺问题,其意义是显而易见的。

3. 参数驱动建筑形体设计

参数驱动建筑形体设计是指通过定义参数来生成建筑形体的方法,当建筑师改变一个参数,形体可以进行自动更新,从而帮助建筑师进行形体研究。参数驱动建筑形体设计仍然可以采用定义构件的方法实现。如果我们要设计一个形体复杂的高层建筑,我们可以将高层建筑的每一层作为一个构件,然后用参数(包含一些简单的函数)对这一层的几何形状进行定义和描述,最后将上下两层之间再用参数关联起来,例如设定上下两层之间的扭转角度,这样就可以通过修改所定义的角度来驱动模型,生成一系列建筑形体。这种模式对于生成一些有规律的,但却很复杂的建筑形体是十分有用的。在Revit 中,还有另外一种方便的工具——体量。体量设计更加接近建筑师的工作模式,建筑师可以从体量推敲做起,而不必关心体量与尺寸参数的关系,当体量推敲满意后,再为体量附着上具有真实属性的建筑构件,例如给形态附着幕墙、墙、楼板等。体量模式较为强大的功能还在于,当我们再次修改体量时,原先附着的建筑构件可以相应更新。这实际上实现了“先形状后尺寸”的设计方式,其技术思想与“变量化实体造型技术”较为接近。

4. 协作设计

在以往,我们理解的协作设计通常是建筑专业与结构水暖电的专业协作。而今天,随着建筑工程复杂性的增加,跨学科的合作成为建筑设计的趋势。在二维CAD 时代,协作设计缺少一个统一的技术平台,但建筑信息模型为传统建筑工种提供了一个良好的技术协作平台,例如,结构工程师改变其柱子的尺寸时,建筑模型中的柱子也会立即更新,而且建筑信息模型还为不同的生产部门,甚至管理部门提供了一个良好的协作平台,例如施工企业可以在建筑信息模型基础上添加时间参数进行施工虚拟,控制施工进度,政务部门可以进行电子审图等等。这不仅改变了建筑师、结构工程师、设备工程师传统的工作协调模式,而且业主、政府政务部门、制造商、施工企业都可以基于同一个带有三维参数的建筑模型协同工作。

2.BIM 的价值

具体而言,BIM 的应用具有以下价值。

1、解决当前建筑领域信息化的瓶颈问题

建立单一工程数据源。工程项目各参与方使用的是单一信息源,确保信息的准确性和一致性。实现项目各参与方之间的信息交流和共享。从根本上解决项目各参与方基于纸介质方式进行信息交流形成的“信息断层”和应用系统之间“信息孤岛”问题。

推动现代CAD 技术的应用。全面支持数字化的、采用不同设计方法的工程设计,尽可能采用自动化设计技术,实现设计的集成化、网络化和智能化。

促进建筑生命期管理,实现建筑生命期各阶段的工程性能、质量、安全、进度和成本的集成化管理,对建设项目生命期总成本、能源消耗、环境影响等进行分析、预测和控制。

2、基于BIM 的工程设计

实现三维设计。能够根据3D 模型自动生成各种图形和文档,而且始终与模型逻辑相关,当模型发生变化时,与之关联的图形和文档将自动更新;设计过程中所创建的对象存在着内建的逻辑关联关系,当某个对象发生变化时,与之关联的对象随之变化。

实现不同专业设计之间的信息共享。各专业CAD 系统可从信息模型中获取所需的设计参数和相关信息,不需要重复录入数据,避免数据冗余、歧义和错误。

实现各专业之间的协同设计。某个专业设计的对象被修改,其他专业设计中的该对象会随之更新。

实现虚拟设计和智能设计。实现设计碰撞检测、能耗分析、成本预测等。

3、基于BIM 的施工及管理

实现集成项目交付IPD(Integrated Project Delivery )管理。把项目主要参与方在设计阶段就集合在一起,着眼于项目的全生命期,利用BIM 技术进行虚拟设计、建造、维护及管理。

实现动态、集成和可视化的4D 施工管理。将建筑物及施工现场3D 模型与施工进度相链接,并与施工资源和场地布置信息集成一体,建立4D 施工信息模型。实现建设项目施工阶段工程进度、人力、材料、设备、成本和场地布置的动态集成管理及施工过程的可视化模拟。

实现项目各参与方协同工作。项目各参与方信息共享,基于网络实现文档、图档和视档的提交、审核、审批及利用。项目各参与方通过网络协同工作,进行工程洽商、协调,实现施工质量、安全、成本和进度的管理和监控。

实现虚拟施工。在计算机上执行建造过程,虚拟模型可在实际建造之前对工程项目的功能及可建造性等潜在问题进行预测,包括施工方法实验、施工过程模拟及施工方案优化等。

4、基于BIM 的建筑运营维护管理

综合应用GIS 技术,将BIM 与维护管理计划相链接,实现建筑物业管理与楼宇设备的实时监控相集成的智能化和可视化管理。

基于BIM 进行运营阶段的能耗分析和节能控制。

结合运营阶段的环境影响和灾害破坏,针对结构损伤、材料劣化及灾害破坏,进行建筑结构安全性、耐久性分析与预测。

对于BIM的研究

对于BIM 国内外一些知名大学率先展开了卓有成效的基础性研究。1996 年美国斯坦福大学提出的4D 模型,将建筑构件的3D 模型与施工进度的各种工作相链接,动态地模拟这些构件的变化过程;新加坡南洋理工大学提出了一个基于IFC 的网络工作平台,采用网络及XML 技术进行信息交换,支持建筑设计到结构分析的模型转换;英国索尔福德大学提出的基于IFC 信息模型的4D 计划管理工具,实现了施工计划模拟、概预算以及施工项目假设分析。笔者及清华大学研究组于2002 年研发的4D 施工管理扩展模型,将建筑物及其施工现场3D 模型与施工进度相链接,并与施工资源和场地布置信息集成一体,2006 年开发了基于IFC 和BIM 的4D 建筑施工管理系统和物业智能管理系统。

随着对信息建模研究的不断深入,一些著名软件开发商也提出了名称各异的信息模型概念。匈牙利Graphisoft 公司提出虚拟建筑(Virtual Building, VB )的概念,并应用于建筑设计软件Arch i CAD 中;美国Bentley 公司基于全信息建筑模型(Single Building Model,SBM)

3.BIM 的应用

BIM 是一种全新的理念,它涉及到从规划、设计理论到施工、维护技术的一系列创新和变革,是建筑业信息化的发展趋势。BIM 的研究对于实现建筑生命期


国内外建筑信息模型BIM理论与实践研究综述》出自:百味书屋
链接地址:http://www.850500.com/news/145222.html
转载请保留,谢谢!
相关文章
推荐范文