您的位置:百味书屋 > 范文大全 > 经典范文 > 微积分 正文

微积分

2016-10-27 12:30:40 来源网站:百味书屋

篇一:微积分入门

中国战国时代(公元前7世纪),我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”,即老庄哲学中所有的无限可分性和极限思想;公元前4世纪《墨经》中有了有穷、无穷、无限小(最小无内)、无穷大(最大无外)的定义和极限、瞬时等概念。这是朴素的、也是很典型的极限概念。而极限理论便是微分学的基础。

古希腊时期(公元前3世纪),阿基米德用内接正多边形的周长来穷尽圆周长,而求得圆周率愈来愈好的近似值,也用一连串的三角形来填充抛物线的图形,以求得其面积。这是穷尽法的古典例子之一,可以说是积分思想的起源。

17世纪,许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。

17世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。

19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。才使微积分进一步的发展开来。

1874年,德国数学家外尔斯特拉斯构造了一个没有导数的连续函数,即构造了一条没有切线的连续曲线,这与直观概念是矛盾的。它使人们认识到极限概念、连续性、可微性和收敛性对实数系的依赖比人们想象的要深奥得多。外尔斯特拉斯最终完成了对实数系更深刻的性质的理解,使得数学分析完全由实数系导出,脱离了知觉理解和几何直观。

人类对自然的认识永远不会止步,微积分这门学科在现代也一直在发展着,人类认识微积分的水平在不断深化。

微积分学 (Calculus, 拉丁语意为用来计数的小石头) 是研究极限、微分学、积分学和无穷级数的一个数学分支,并成为了现代大学教育的重要组成部分。历史上,微积分曾经指无穷小的计算。更本质的讲,微积分学是一门研究变化的科学,正如几何学是研究空间的科学一样。

客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。

由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。

微积分学在科学、经济学和工程学领域被广泛的应用,来解决那些仅依靠代数学不能有效解决的问题。微积分学在代数学、三角学和解析几何学的基础上建立起来,并包括微分学、积分学两大分支。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。微积分学基本定理指出,微分和积分互为逆运算,这也是两种理论被统一成微积分学的原因。我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。在更深的数学领域中,微积分学通常被称为分析学,并被定义为研究函数的科学。

在高二上学期的数学学习过程中,我们认识了导数和定积分,并开始了对其应用的理解和练习。其实,早在高中物理开始不久后的学习中,我们就接触到了微积分的原型——微元法。同当年的科学家一样,我们也因物理上的应用需要,开始了对微积分学的认识之旅。

借着这次研究性学习的契机,我们就了解一下微积分学的发展历史,认识数学研究对社会发展的重要意义,本着“以史为镜”的态度了解其中波折而有趣的发展历程;并由此拓展自己的知识面,增添自己对微积分学习的兴趣。

作为理科生,探究过程中的我们也能结合所学历史知识、辩证分析的方法,培养自身人文素养,增强自身的综合素质,为高中阶段的历史学习画上圆满的句号。

我们也对微积分在生活中就一些简单实际应用的一些研究来提高自己在以微积分的思想方法解决问题的能力;了解在哪些情况,哪些领域会用到微积分;进一步加深对微积分的认识。

另一方面,在进行小组讨论、共同研究的时候,通过组员的积极参与和组员间的合作,我们可以通过共同探索增强自己的责任感,增进相互之间的友谊,提高自身的实践探究能力,学会将理论知识和动手实践能力结合来解决现实生活中的问题,以此提高自身的综合素质。

微积分的主要内容及其他

研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分析。

本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。微积分的基本概念和内容包括微分学和积分学。

微分学的主要内容包括:极限理论、导数、微分等。

积分学的主要内容包括:定积分、不定积分等。

微积分是与科学应用联系着发展起来的。最初,牛顿应用微积分学及微分方程对第谷浩瀚的天文观测数据进行了分析运算,得到了万有引力定律,并进一步导出了开普勒行星运动三定律。此后,微积分学成了推动近代数学发展强大的引擎,同时也极大的推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。

微积分主要有三大类分支:极限、微分学、积分学。微积分的基本理论表明了微分和积分是互逆运算。牛顿和莱布尼茨发现了这个定理以后才引起了其他学者对于微积分学的狂热的研究。这个发现使我们在微分和积分之间互相转换。这个基本理论也提供了一个用代数计算许多积分问题的方法,该方法并不真正进行极限运算而是通过发现不定积分。该理论也可以解决一些微分方程的问题,解决未知数的积分。微分问题在科学领域无处不在。

微积分的基本概念还包括函数、无穷序列、无穷级数和连续等,运算方法主要有符号运算技巧,该技巧与初等代数和数学归纳法紧密相连。

微积分被延伸到微分方程、向量分析、变分法、复分析、时域微分和微分拓扑等领域。微积分的现代版本是实分析。

极限

微积分中最重要的概念是“极限”。微商(即导数)是一种极限。定积分也是一种极限。

从牛顿实际使用它到制定出周密的定义,数学家们奋斗了200多年。现在使用的定义是维斯特拉斯于19世纪中叶给出的。

数列极限就是当一个有顺序的数列往前延伸时,如果存在一个有限数(非无

限大的数),使这个数列可以无限地接近这个数,这个数就是这个数列的极限。

数列极限的表示方法是:

limxn?Ln??

xn?

其中 L 就是极限的值。例如当

越大(越往前延伸),这个值越趋近于0。

导数 12n时,它的极限为 L = 0。就是说n

我们知道在运动学中,平均速度等于通过的距离除以所花费的时间,同样在一小段间隔的时间内,除上其走过的一小段距离,等于这一小段时间内的速度,但当这一小段间隔的时间趋于零时,这时的速度为瞬时速度,无法按照通常的除法计算,这时的速度为时间的导数。得用求导的方法计算。也就是说,一个函数的自变量趋近某一极限时,其因变量的增量与自变量的增量之商的极限即为导数。在速度问题上,距离是时间的因变量,随时间变化而变化,当时间趋于某一极限时,距离增量除以时间增量的极限即为距离对时间的导数。

导数的几何意义是该函数曲线在这一点上的切线斜率。

微分学

微分学主要研究的是在函数自变量变化时如何确定函数值的瞬时变化率(或微分)。换言之,计算导数的方法就叫微分学。微分学的另一个计算方法是牛顿法,该算法又叫应用几何法,主要通过函数曲线的切线来寻找点斜率。费马常被称作“微分学的鼻祖”。

积分学

积分学是微分学的逆运算,即从导数推算出原函数。又分为定积分与不定积分。一个一元函数的定积分可以定义为无穷多小矩形的面积和,约等于函数曲线下包含的实际面积。根据以上认识,我们可以用积分来计算平面上一条曲线所包含的面积、球体或圆锥体的表面积或体积等。 而不定积分,用途较少,主要用于微分方程的解。

微积分的符号

微分学中的符号“dx”、“dy”等,系由莱布尼茨首先使用。其中的d源自拉丁语中“差”(Differentia)的第一个字母。积分符号“∫”亦由莱布尼茨所创,它是拉丁语“总和”(Summa)的第一个字母s的伸长(和Σ有相同的意义)。

微积分学的应用

微积分学的发展与应用几乎影响了现代生活的所有领域。它与大部分科学分支,特别是物理学,关系密切,而经济学亦经常会用到微积分学。几乎所有现代技术,如建筑、航空等都以微积分学作为基本数学工具。

微积分学课程

在高校理、工科教学中,微积分是“高等数学”的主要内容之一。其教学法由学科创立一开始就受到人们重视。

篇二:微积分到底是个什么东西?

微积分到底是个什么东西?

日日夜夜困扰我们的高数其实小名就叫微积分,不知你是否也有过如此感觉,我们口中的极限、微分、积分、导数到底是什么东西?你是不是也只是在机械地用着那些看似顺手的公式?他们的符号是那么熟悉又是那么陌生,这些神奇的符号由谁发明,代表了什么意义?这些概念从哪里发展过来,这些公式又如何被推导出来的呢?想起在学专业课时满课本的微分方程,设想如果没有微积分学,没有探索动态未知系统的方法,没有这种数学分析,科学的世界肯定会是一片黑暗…越想越复杂,越想越崩溃…

上了一上午的数学课,实在记不下那些公式和技巧了,加上最近几天脑袋胡思乱想,心情难说好,就随手翻了翻《什么是数学》,大家果然是大家…

有时人们过于简单得将微积分的发明归功于牛顿和莱布尼茨两个人,这种看法是十分不妥当的,微积分是长期演变的结果,既不是由二人开始也不是由二人结束,但不可否分二人在其发展的过程中起到了决定性的作用。十七世纪的欧洲分散居住着很多有志的科学家,他们在学校之外顽强的继续着伽利略和开普勒的数学工作,他们通过信件和旅行来往,这些人保持着紧密的联系,后来,他们在实际的应用中发现了两个中心的问题,即确定已知曲线的切线和确定曲线所包围的面积。其实就是这两个问题分别导致了微分学和积分学的诞生,也分别是这两个分支所研究的基本问题。

于是乎这两个学科踏上了他们数百年的发展道路,遇到了牛顿和莱布尼茨之后它们才有了交集,成为一个让我们抓耳挠腮的微积分学。

1、最初的积分学。

2、最初的微分学。

3、极限思想的重要性。

4、积分和微分是如何二合一的?

1、 最初的积分学。

在求曲边所包围的面积这一基本问题出现之后,人们很惊异的发现,老祖宗们不服不行啊,这个问题其实在公元前就已经被解决了,只是在微积分基本原理被提出来之前它的计算很受制约。比较著名的

就是公元前三世纪阿基米德求取圆形和抛物线弓形的面积。

我们都知道矩形面积的计算方法,之后三角形看成它的一半进行计算,折线多边形的面积可以分成几个三角形来计算,可是曲边图形呢?阿基米德的方法是在这些图形中内接多边形,当边数增加的时候,多边形的面积就逐渐逼近了曲边图形的面积,并且还得到了圆周率的值,这就是“穷竭”的思想,是极限思想的萌芽。当边数无限增加的时候,多边形的面积就无限趋近于面积值。十七世纪的时候,更多的问题得以解决,但是在遇到“极限”的时候,它们都依赖于特殊的技巧,如:等差、等比数列的求和公式,相当的复杂,而且这种特殊就决定了局限性。

到了近代,极限的思想稍成熟之后,莱布尼茨用分割、近似、求和、取极限的方法叙述了解决曲边图形求面积的一般方法(定积分)

2、 微分的起源。

积分的概念早在古代就打下了基础但是微分的另一个基础—导数,则是17世纪才由费马和其他人逐步建立起来,费马对函数的极大和极小值问题非常感兴趣,为了刻划极大值和极小值点的特点,很自然要用到曲线切线的概念,来给出曲线上每一点的方向,极值点的切线必然平行于x轴,否则这些曲线在这些点必然上升或者下降,我们刻划直线的方向用的是斜率,我们的问题是如何找到计算斜率的方法?某一点的斜率如何定义呢?

总的来说确定已知曲线的切线问题的解决方法是:自变量取值无穷小,用切线值微小增量dy来代替函数值增量△y(△y=dy+o(△x)),这就催生出了一点的斜率,他的名字就叫做导数!可见一元函数的可导和可微是等价的。用割线取极限的过程近似,可以得出导数的定义式。取极限的过程就叫做对函数进行微分,dy就是微分值,它其实就是切线的微小增量而已,莱布尼茨由微分定义,用dy/dx即微商来表示导数。这就是微分、导数的来源。每一点的斜率与自变量值又组成了一个映射,这就是导函数。

这样,求微分的过程又再次变成了求极限的问题,表面上是那么的难求,但是一旦脱离普遍领域,只考虑个别函数,我们就能在特殊情况下用导数的定义式得到确切的结果。

如常函数。仅仅用消去的方法,就得到了X平方、三次方的导数,用同样的方法还可以得到其他幂函数的导数。三角函数的导函数求法用到了重要极限。

导数的加减乘除运算由定义式能很容易推出来。

由导数定义式很容易知道反函数的导数是其原函数导数的倒数 我们只需要将定义式稍加分解,就得到了复合函数的求导法则。 基本初等函数导数公式、四则运算、符合函数求导是导数运算的基础,隐函数、参数方程等的求导都是建立在其上。

3、 极限思想的重要性。

由积分和微分基本问题的解决我们可以看出,极限的思想是相当重要的,事实上,它是近代数学的基础。初学的时候,这种“无限趋近,永不相等”的动态思想的非常不好接受的,当然几个世纪之前,那时的人们甚至是数学家都把接受极限思想上升到了哲学的层面,重重障碍,连最懂它的牛顿和莱布尼茨都不愿承认这种已经被运用他们理论中的方法是一种全新的叫极限的方法,仍然停留在“无穷小量”、“微分”等词语的层面。对极限思想的数学描述也是一个难题,后来的西格玛-N,西格玛-西塔定义是一百多年探索和挫折的总结,用类似于A和B竞赛的方式精炼地描述了极限的过程,有了极限的数学描述,我们将连续也用极限描述,这就是相当重要的“若连续,极限值等于函数值”(其实连不连续从图形上一眼便知…)。

极限的计算出来连续函数在某一点的极限值可以直接带入之外,其他的并不是那么好计算。我们用夹逼准则证明了重要极限,重要极限的出现及(等价)无穷小概念的出现对各种包括未定式(0/0等极限值不定的式子)的求解、极限的运算规则提供了重要的方法。(运算规则、通分有理化变量替换、洛必达法则、重要极限、无穷下替换构成了计算极限的方法)。

篇三:微积分基本教程

微积分教程

微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

微积分的基本介绍

微积分学基本定理指出,求不定积分与求导函数互为逆运算[把上下限代入不定积分即得到积分值,而微分则是导数值与自变量增量的乘积],这也是两种理论被统一成微积分学的原因。我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。

微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,但是理论基础是不牢固的。因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。

学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。所以,必须要利用代数处理代表无限的量,这时就精心构造了“极限”的概念。在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,相反引入了一个过程任意小量。就是说,除的数不是零,所以有意义,同时,这个小量可以取任意小,只要满足在德尔塔区间,都小于该任意小量,我们就说他的极限为该数——你可以认为这是投机取巧,但是,他的实用性证明,这样的定义还算比较完善,给出了正确推论的可能性。这个概念是成功的。

微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。

客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。

由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。

微积分的本质

【参考文献】 刘里鹏.《从割圆术走向无穷小——揭秘微积分》,长沙:湖南科学技术出版社,2009

1.用文字表述:

增量无限趋近于零,割线无限趋近于切线,曲线无限趋近于直线,从而以直代曲,以线性化的方法解决非线性问题,这就是微积分理论的精髓所在。

2.用式子表示:

微积分的基本方法

微积分的基本原理告诉我们微分和积分是互逆的运算,微积分的精髓告诉我们我们之所以可以解决很多非线性问题,本质的原因在于我们化曲为直了,现实生活中我们会遇到很多非线性问题,那么解决这样的问题有没有统一的方法呢?

经过研究思考和总结,笔者认为,微积分的基本方法在于:先微分,后积分。

笔者所看到的是,现在的教材没有注意对这些基本问题的总结,基本上所有的教材每讲到积分时都还重复古人无限细分取极限的思想,讲到弧长时取极限,讲到面积时又取极限,最后用一个约等号打发过去。这样一来不仅让学生听得看得满头雾水,而且很有牵强附会之嫌,其实懂得微积分的本质和基本方法后根本不需要再那么重复。

微积分学的建立

从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。

公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。

到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。

十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。

十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。

牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。

牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。

德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一篇说理也颇含糊的文章,却有划时代的意义。它已含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,

远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。

微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。

前面已经提到,一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。微积分也是这样。 不幸的是,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。

其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的。比较特殊的是牛顿创立微积分要比莱布尼茨早10年左右,但是正式公开发表微积分这一理论,莱布尼茨却要比牛顿发表早三年。他们的研究各有长处,也都各有短处。那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年。

应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的。他们在无穷和无穷小量这个问题上,其说不一,十分含糊。牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说。这些基础方面的缺陷,最终导致了第二次数学危机的产生。

直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。才使微积分进一步的发展开来。

任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者。在微积分的历史上也闪烁着这样的一些明星:瑞士的雅科布?贝努利和他的兄弟约翰?贝努利、欧拉、法国的拉格朗日、柯西??

欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分才是真正的变量数学,是数学中的大革命。微积分是高等数学的主要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩。

微积分的基本内容

研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分析。 本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。微积分的基本概念和内容包括微分学和积分学。

微分学的主要内容包括:极限理论、导数、微分等。

积分学的主要内容包括:定积分、不定积分等。

微积分是与科学应用联系着发展起来的。最初,牛顿应用微积分学及微分方程对第谷浩瀚的天文观测数据进行了分析运算,得到了万有引力定律,并进一步导出了开普勒行星运动三定律。此后,微积分学成了推动近代数学发展强大的引擎,同时也极大的推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。

一元微分

定义: 设函数y = f(x)在某区间内有定义,x0及x0 + Δx在此区间内。如果函数的增量Δy = f(x0 + Δx) – f(x0)可表示为 Δy = AΔx0 + o(Δx0)(其中A是不依赖于Δx的常

数),而o(Δx0)是比Δx高阶的无穷小,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = Adx。

通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。

几何意义

设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δy|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。

多元微分

多元微分又叫全微分,是由两个自变量的偏导数相对应的一元微分的增量表示的。 ΔZ=A*ΔX+B*ΔY+ο(ρ)为函数Z在点(x、y)处的全增量,(其中A、B不依赖于ΔX和ΔY,而只与x、y有关,ρ=[(x∧2+y∧2)]∧(1\2),A*ΔX+B*ΔY即是Z在点的全微分。

总的来说,微分学的核心思想便是以直代曲,即在微小的邻域内,可以用一段切线段来代替曲线以简化计算过程。

积分有两种:定积分和不定积分。

定积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,定积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。

一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。 其中:[F(x) + C]' = f(x)

一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值。

定积分和不定积分的定义迥然不同,定积分是求图形的面积,即是求微元元素的累加和,而不定积分则是求其原函数,它们又为何通称为积分呢?这要靠牛顿和莱布尼茨的贡献了,把本来毫不相关的两个事物紧密的联系起来了。详见牛顿——莱布尼茨公式。

一阶微分与高阶微分

函数一阶导数对应的微分称为一阶微分;

一阶微分的微分称为二阶微分;

.......

n阶微分的微分称为(n+1)阶微分

即:d(n)y=f(n)(x)*dx^n (f(n)(x)指n阶导数,d(n)y指n阶微分,dx^n指dx的n次方)

含有未知函数yt=f(t)以及yt的差分Dyt, D2yt,?的函数方程,称为常差分方程(简称差分方程);出现在差分方程中的差分的最高阶数,称为差分方程的阶。n阶差分方程的一般形式为

F(t,yt,Dyt,?, Dnyt)=0,

其中F是t,yt, Dyt,?, Dnyt的已知函数,且Dnyt一定要在方程中出现。

含有两个或两个以上函数值yt,yt+1,?的函数方程,称为(常)差分方程,出现在差分方程中未知函数下标的最大差,称为差分方程的阶。n阶差分方程的一般形式为 F(t,yt,yt+1,?,yt+n)=0,

其中F为t,yt,yt+1,?,yt+n的已知函数,且yt和yt+n一定要在差分方程中出现。 常微分方程与偏微分方程的总称。含自变量、未知函数和它的微商(或偏微商)的方程

称为常(或偏)微分方程。未知函数为一元函数的微分方程,称为常微分方程。未知函数为多元函,从而出现多元函数的偏导数的方程,称为偏微分方程。

微积分的诞生及其重要意义

微积分的诞生是继Euclid几何建立之后,数学发展的又一个里程碑式的事件。微积分诞生之前,人类基本上还处在农耕文明时期。解析几何的诞生是新时代到来的序曲,但还不是新时代的开端。它对旧数学作了总结,使代数与几何融为一体,并引发出变量的概念。变量,这是一个全新的概念,它为研究运动提供了基础

推导出大量的宇宙定律必须等待这样的时代的到来,准备好这方面的思想,产生像牛顿、莱布尼茨、拉普拉斯这样一批能够开创未来,为科学活动提供方法,指出方向的领袖,但也必须等待创立一个必不可少的工具——微积分,没有微积分,推导宇宙定律是不可能的。在17世纪的天才们开发的所有知识宝库中,这一领域是最丰富的,微积分为创立许多新的学科提供了源泉。

微积分的建立是人类头脑最伟大的创造之一,一部微积分发展史,是人类一步一步顽强地认识客观事物的历史,是人类理性思维的结晶。它给出一整套的科学方法,开创了科学的新纪元,并因此加强与加深了数学的作用。恩格斯说:

“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发现那样被看作人类精神的最高胜利了。如果在某个地方我们看到人类精神的纯粹的和惟一的功绩,那就正是在这里。”

有了微积分,人类才有能力把握运动和过程。有了微积分,就有了工业革命,有了大工业生产,也就有了现代化的社会。航天飞机。宇宙飞船等现代化交通工具都是微积分的直接后果。在微积分的帮助下,万有引力定律发现了,牛顿用同一个公式来描述太阳对行星的作用,以及地球对它附近物体的作用。从最小的尘埃到最遥远的天体的运动行为。宇宙中没有哪一个角落不在这些定律的所包含范围内。这是人类认识史上的一次空前的飞跃,不仅具有伟大的科学意义,而且具有深远的社会影响。它强有力地证明了宇宙的数学设计,摧毁了笼罩在天体上的神秘主义、迷信和神学。一场空前巨大的、席卷近代世界的科学运动开始了。毫无疑问,微积分的发现是世界近代科学的开端。

微积分优先权大争论

历史上,微积分是由两位科学家,牛顿和莱布尼茨几乎同时发现的。在创立微积分方面,莱布尼茨与牛顿功绩相当。这两位数学家在微积分学领域中的卓越贡献概括起来就是:他们总结出处理各种有关问题的一般方法,认识到求积问题与切线问题互逆的特征,并揭示出微分学与积分学之间的本质联系;他们都各自建立了微积分学基本定理,他们给出微积分的概念、法则、公式和符号理论为以后的微积分学的进一步发展奠定了坚实而重要的基础。总之,他们创立了作为一门独立学科的微积分学。

微积分这种数学分析方法正式诞生以后,由于解决了许多以往靠初等数学无法作答的实际问题,所以逐渐引起科学家和社会人士的重视。同时,也带来了关于“谁先建立微积分”问题的争论。从牛顿和莱布尼茨还在世时就开始出现这种争论,英国和欧洲大陆各国不少科学家都卷入这场旷日持久的、尖锐而复杂的论战。这场论战持续了100多年的时间。 就创造与发表的年代比较,牛顿创造微积分基本定理比莱布尼茨更早。前者奠基于1665—1667年,后者则是1672—1676年,但莱布尼茨比牛顿更早发表微积分的成果。故发明微积分的荣誉应属于他们两人。

第二次数学危机及微积分逻辑上的严格化

微积分诞生之后,数学迎来了一次空前繁荣的时期。对18世纪的数学产生了重要而深远的影响。但是牛顿和莱布尼茨的微积分都缺乏清晰的、严谨的逻辑基础,这在初创时期是不可避免的。科学上的巨大需要战胜了逻辑上的顾忌。他们需要做的事情太多了,他们急于


微积分》出自:百味书屋
链接地址:http://www.850500.com/news/12257.html
转载请保留,谢谢!
查看更多相关内容>>微积分
相关文章
  • 微积分

    微积分入门序中国战国时代(公元前7世纪),我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”,即老庄哲学中所有的无限可分性和极限思想;公元...

推荐范文